Can Timber Construction Help Achieve Climate Goals?

Why is the environment important?

Buildings use:

- 40% of global energy
- 25% of global water
- 40% of global resources

Buildings emit:

• 1/3 of greenhouse gases

According to United Nations Environment Programme

Actors

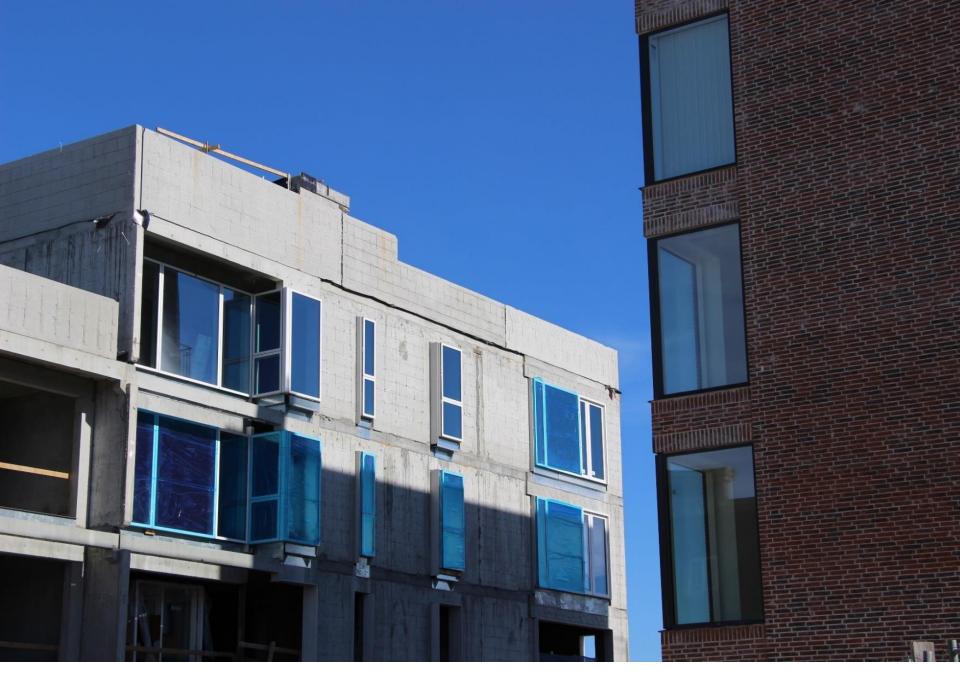
- Architects
- Engineers
- Contractors
- Developers
- Financers

Soft Hard

(social/environmental value) (economic value)

Architects

Engineers


Contractors

Developers

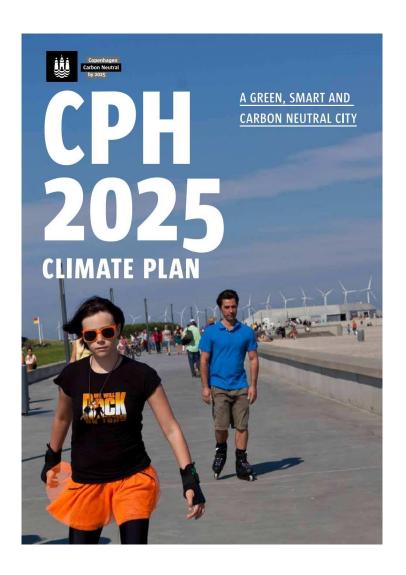
Financers

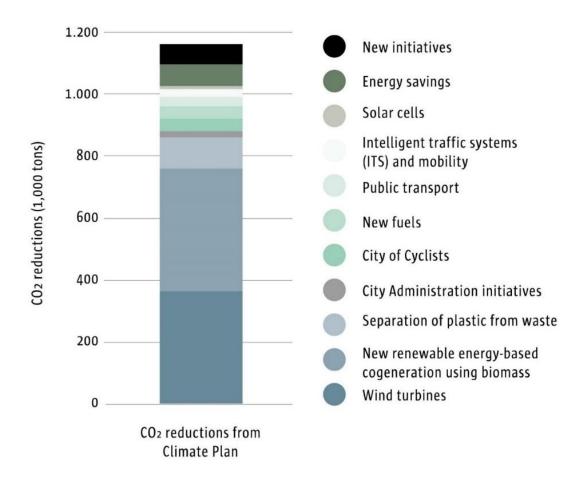
In Denmark, approximately 80% of new residential buildings are built using concrete

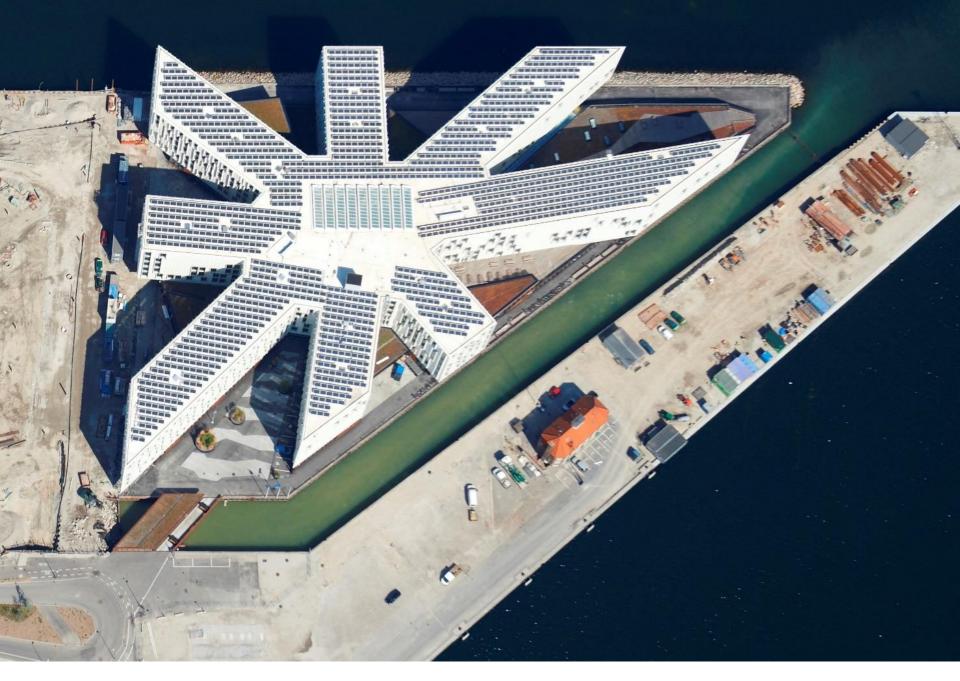
Construction system is coupled with low cost and low risk

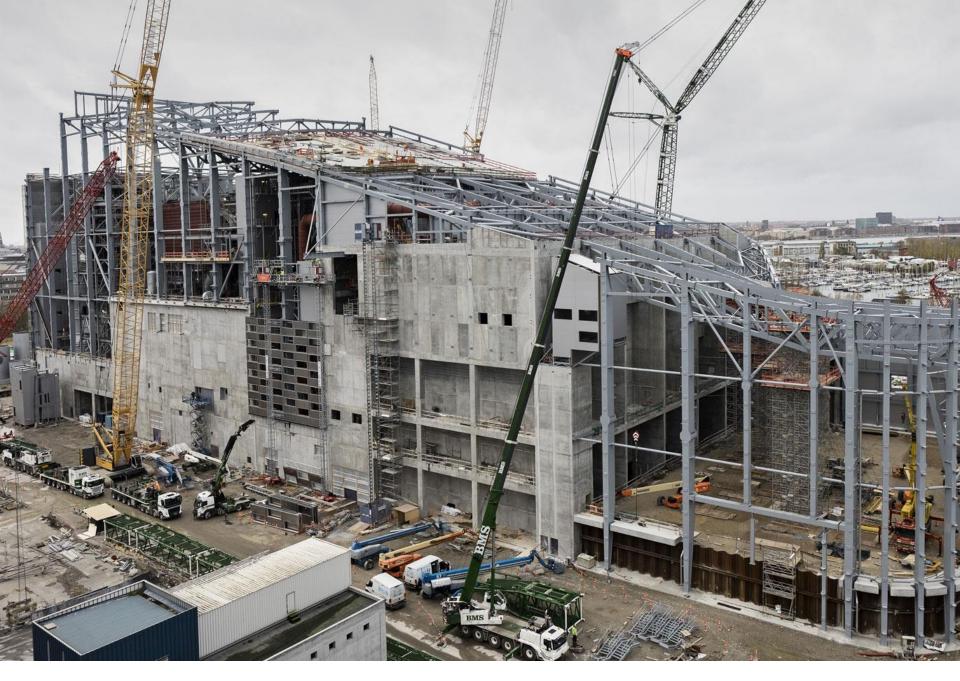
- Developed in response to the need to rebuild following the Second World War
- Well-known in terms of design, cost and risk
- Local supply chain

BUT


 Cement production contributes significantly to global CO2 emissions and has a high embodied energy







1,400 solar panels

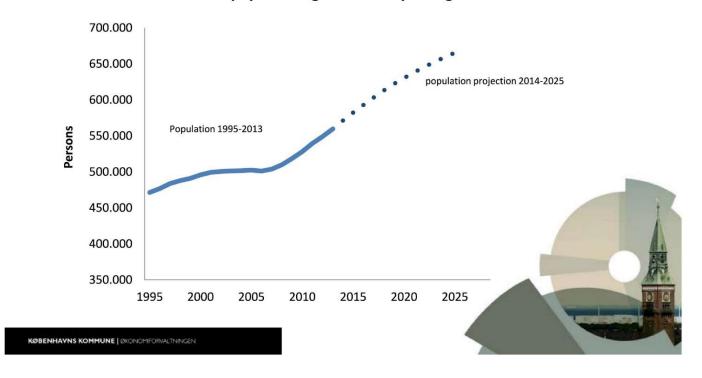
400,000 tons of waste per year

50% commute by bike

2,000 city bikes

400 electric DriveNow cars

Energy renovation of existing buildings



No reference to what we build with!

POPULATION GROWTH

Estimated population growth in Copenhagen 1995 - 2025

NEW DEMANDS

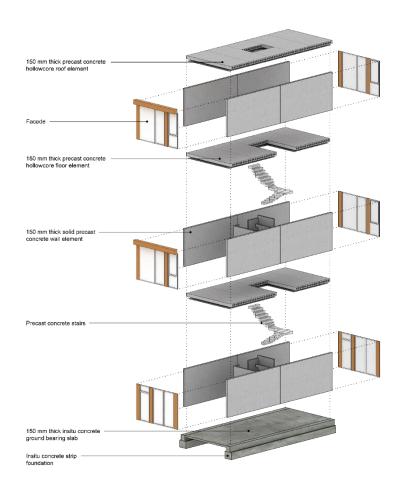
Need for:

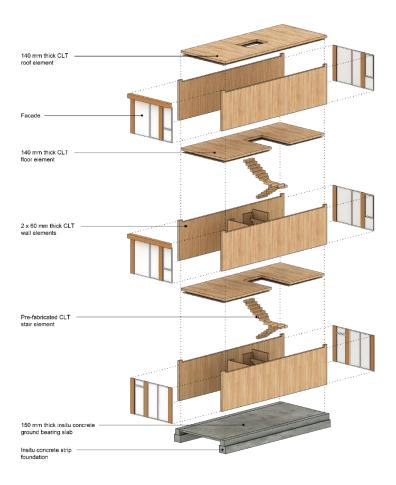
- New build squaremeters due to growth
- 45.000 new housing units by 2027 to make room for 100.000 new citizens
- Investment in cultural institutions, recreational areas and infrastructure to maintain liveability as population grow

KØBENHAVNS KOMMUNE | ØKONOMFORVALTNINGEN

- Undeveloped
- Relatively unknown in terms of design, cost and risk
- No local supply chain in Denmark

- Timber is carbon negative when sequestration is considered
- Low embodied energy
- Can be designed for disassembly

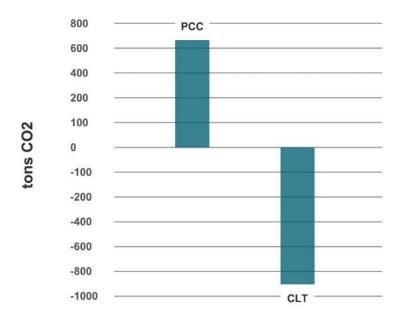

Comparison of CLT and precast concrete - Remisevej

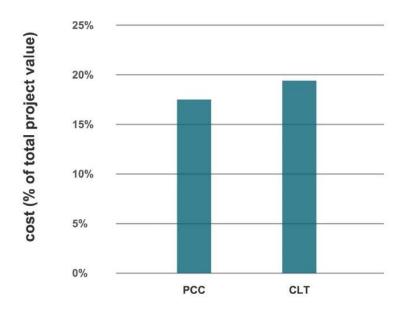

• Area: 6,100 m2 residential

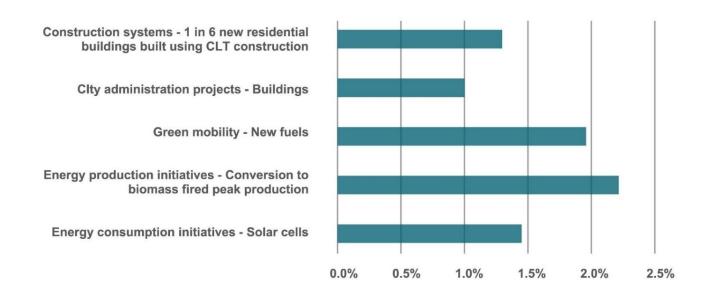
• Budget: 75 mio DKK

• Architect: Force 4, Cubo Arkitekter (competition 2015)

Remisevej: Project data




INP	UT								
	CLT Buildir	ng			РСС В	uilding			
	Material volu	Material volumes CLT 26.12 m³				l Volumes			
	CLT	26.12	m³		PCC	32.9	m³		
	PCC	5.78	m³						
	Total	31.9	m³		Total	32.9			
	End Of Life								
	0 Recycling 1 Inceneration 2 Landfill	0			with the an	CLT used in buil ns etc. If a compar ntirely in PCC on I	ison is made		
RES	ULTS								
		CO₂e emission				Material	usage		
		CLT	-19139	kg CO₂e		CLT	13060	kg Material	
CLT Building		PCC	2252	kg CO₂e		PCC	13872	kg Material	
		Sum		kg CO₂e		Sum		kg Material	
		CO ₂ e en	nission			Material	IISAGA		
						Widteria	usuge		
PCC B	uilding	PCC	12446	kg CO₂e		PCC	78960	kg Material	
		CO o on	nission			Material	usage		
		CO ₂ e en							


Remesivej: Carbon calculator

		0,11001	ATIONS											
				CLT						Pre d	cast co	ncret	е	
	CLT	7			Con	crete								
			Cradle	e to gate										
	kg CO₂eł kg	kg CO₂e Notes			kg CO₂ełkg	kg CC	e Notes	References			kg CO2e/1kg	CO2e	Notes	F
Sequesteration	-1.8	0 -23508.00	(1) [1][2]	Manufacture		0.13	1849.14 (17)(8)(9) [10][7][8]	Manufacture		0.1333	10525.37	(17)(8)(9)	[1
Manufacture	0.1		(2) [1][3]											
Total	-1.6	7 -21744.90		Total		0.13	849.14		Total		0.1333	10525.37		+
	Transpo	rt to site, asse	mbly, dismantlir	ng and transport from	m site is not ha	ndled								
km				kn		kg CC	₂ e Notes	References		km	kg CO2e / I kg	CO2e	Notes	F
Austria -> Copenhage	1050 0.1	9 2605.47 (14))(15)(18) [9]		150	0.19	395.35 (16			12	5 0.19	1875.30	(16	i)
Total	0.1	9 2605 47		Total		0.19	395.35		Total		0.19	1875.30		
TULGI	0.1	2003.47		I Utdi		0.13	333.33		Total		0.13	1073.30		+
		End o	f Life - Scenario (D: Reuse/recycle (10)	(11)									
	kg CO₂eł kg	kg CO₂e Notes	References		kg CO₂e i kg	kg CC		References			kg CO2e71kg		Notes	F
				Treatment	0.001) [7]	Treatment		0.000575	45.40		[7
				(Carbonisation)		0.00) [7]	(Carbonisation)		0	0.00	(13)	[7
Total	0.0	0.00	(3) [1]	Total		0.00	7.98		Total		0.00	45.40		+
		F	end of Life - Scen	ario 1: Incineration										
	kg CO₂eł kg	kg CO₂e Notes		a ar momoration										
CO2 released	1.8		(4) [1]											
Avoided emission	-0.2	4 -3134.40	(5)(6) [1][4][5]											
Total	1.5	6 20373.60												
			End of Life - Sc	enario 2: Landfill										
	kg CO₂eł kg	kg CO₂e Notes	References											
Total	2.1	5 28079.00	(7) [1]											

Remesivej: Carbon calculator

contribution towards overall carbon deficit (1.2 mio tons/year)

- Certain actors are only motivated by time and money not sustainability
- These actors could be motivated to use CLT if there were clear financial incentives
 - faster construction, lower energy bills, competitive market conditions etc
- Governments should incentivise CLT as part of their sustainable agendas
- Embodied energy of CLT should be taken into account when calculating energy demands for buildings

Thank you

Duncan Horswill Søren Jensen Consulting Engineers

dho@sj.dk www.sj.dk